
Indexed Signature Slice Lists for
Fast Nearest-Neighbour Search

ABSTRACT
Signature Files in the Information Retrieval context are a
technique used to represent documents, images and other
abstract objects with binary signatures of fixed length. The
signatures have the property that they preserve in signa-
ture space the mutual topological relationships that exist in
the original representation of objects. The original repre-
sentation is typically some form of very high-dimensional,
often highly sparse, feature vector derived with some prob-
abilistic, language model, or other suitable feature extrac-
tion/definition approach. Binary signatures offer a compres-
sion of the original representation onto a lower dimensional
and dense representation. It facilitates efficient similarity
computations using the Hamming distance[4] measure. This
efficiency motivates most applications of signatures. Local-
ity Sensitive Hashing is a method of dimensionality reduc-
tion that uses binary signatures often used in near-duplicate
detection in image or text document collections. There are
numerous publications about successful applications of Sig-
nature files. While signatures offer an acceptable measure
of similarity, performing a search with a given search argu-
ment (a signature) requires a Hamming distance calculation
against every signature in a collection. This quickly becomes
excessive when dealing with web-sized collections, and there
lies the problem of scalability. This paper addresses the
scalability problem in signature search. We describe a new
method of indexing and searching large binary signature col-
lections to efficiently find similar signatures in very large
collections. Experimental results demonstrate that our ap-
proach is effective in finding a set of nearest signatures to a
given search argument (signature) with high efficiency and
high fidelity.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Clustering,
Retrieval Models, Search Process

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

General Terms
Algorithms, Experimentation, Performance, Theory

Keywords
Document Signatures, Near-Duplicate Detection

1. DOCUMENT SIGNATURES
Topological signatures, as described in Geva and De Vries[3]

are a refinement on Locality Sensitive hashing. It is re-
lated to the approach originally explored by Faloutsos and
Christodoulakis[2] of using file signatures to represent docu-
ments. ThesFaloutsos approach was shown to be inferior to
inverted file approaches by Zobel et al.[6] Topology preserv-
ing signatures in the work reported in this paper are derived
from a document-term matrix, randomly-projected onto a
compact N dimensional binary {±1}N subspace to produce
a new, lower-order matrix (that can be efficiently stored)
while preserving the topological relationships of documents
in the original document-term matrix. The geometric inter-
pretation of this projection is that the document collection
is mapped from its original vector-space representation as a
term-document weight matrix, onto the {±1}N hypercube.
Each document is mapped to a vertex of the hypercube,
and the property of the random projection is that it largely
preserves the relative pairwise distances between points in
input space, on the hypercube. Furthermore, in [3] an effec-
tive approach to performing ad-hoc keyword based search
with signatures is described. It overcomes the difficulties
identified in the earlier models. A complete description of
this approach is given in Geva and De Vries[3], where it is
demonstrated that for early precision the use of signatures
for ad-hoc retrieval leads to search performance that is not
statistically different from state of the art models such as
BM25, Language Models and Divergence from Randomness
models.

For the sake of completeness, we briefly describe some de-
tails of that file signature approach. The original Faloustos
et al approach is essentially a bloom filter; although not ex-
plicitly described as such in the original paper[2]. Terms in
a document are hashed to create pseudorandom sparse bit
strings that are combined together (through a bitwise OR
operator) to create a document signature. Queries are then
tested by comparing the signatures of terms in the query (de-
rived in the same manner) with the document signatures.
If all the set bits in the query signature are also set in a
document signature, there is a possibility that the terms ap-
pear in the document. Since it is possible for these term bit

strings to combine to create a false positive for a term not
present in the document, the document must be scanned to
ensure that the terms in the query are actually present. This
is characteristic of bloom filters, which are highly efficient
but do result in false positives. The rate of false positives
can be reduced by increasing the size of the bit strings at
the expense of a greater storage requirement.

Signatures generated in this method can be used for in-
formation retrieval but have significant drawbacks, including
the necessity of storing the terms present in the document
to avoid false positives, and the cost of eliminating those be-
come highly excessive. They also require extensive amounts
of storage space to ensure signatures are long enough to re-
duce the occurrence of these false positives.

Locality Sensitive Hashing, as implemented and refined in
the TopSig approach[3] fixes most of the problems identified
with document signatures in terms of retrieval performance.
However, one problem remained unsolved in that paper- the
scalability of the approach is still limited while it relies on
sequential exhaustive Hamming distance calculations. The
approach required performing a Hamming distance calcu-
lation against every signature in the collection and it be-
comes prohibitive when collection sizes become very large.
An approach is therefore needed to avoid performing this
calculation against every signature, while still retrieving the
nearest signatures.

2. NEAR-DUPLICATE DETECTION
While we have approached the use of document-derived

signatures from the perspective of information retrieval, the
use of signatures for nearest-neighbour search is not new as
many approaches already exist that involve using signatures
for near-duplicate detection.

Manku et al[5] describe their approach to the problem
of trying to find close document-derived signatures for the
purpose of finding duplicate documents. Their approach
involves using 64-bit locality-sensitive signatures with the
specific aim of finding all signatures that are at a Hamming
distance of no more than 3 bits from the source signature.
While the parameters of the search are completely different,
this is a similar problem to the problem this paper is at-
tempting to find a solution for. Ultimately their approach
comes down to storing the signatures in a number of sorted
lists and using binary searches to find runs that may contain
signatures that match the properties described.

This approach is not feasible for large signatures (1024-bit
is the typical signature size for a TopSig signature) due to
the potential maximum distance and number of sorted lists
required; however, one of the other possible approaches de-
scribed in the paper and discarded for being inappropriate
for 64-bit signatures is used here to some extent; namely,
using probes into all possible signatures n bits away from
the search signature. This does not work for 64-bit signa-
tures, but when the signatures are longer the approach gains
validity. It should be noted that 64 bit signatures are often
used because it require less storage space and maps nicely to
processor architecture. However, this choice is has a serious
flaw - with 64 bits, and assuming a binomial distribution of
signatures, there are effectively very few possible distances
to work with in a similarity search. Most signatures will fall
at a hamming distance of about 32 bits from the search ar-
gument. This leaves very little granularity (i.e. <32) in dis-
tances if millions of objects were to be distinguished by their

distance from a search argumnet. Our approach works with
signatures having thousands of bits as is necessary when
working with document collections of realistic sizes (e.g the
Wikipedia, or larger).

3. INDEXED SIGNATURE SLICE LISTS
Indexed Signature Slice Lists (ISSL) is a hybrid approach

that combines the inverted file approach with the signature
file approach. The purpose of an ISSL table is to provide
an index into a signature file to allow searching for signa-
tures close (in terms of Hamming distance) to a given search
signature. In a normal text inverted file scheme the post-
ings correspond to terms in the document collection and the
search process combines those postings for a given set of
query terms to produce a ranked list of results. File Sig-
natures are just long binary vectors and do not have a vo-
cabulary as such. If we are to invert a signature file we
need to have a representation analogous to terms in a text
document. Signatures are sliced into 16-bit segments. Each
segment can take on any of the 64K possible binary values;
these values become the vocabulary that we use to invert the
respective slice (over the entire collection.) In a somewhat
analogous manner to term inverted lists, ISSLs are posting
lists of signature slice values. For instance, consider the first
slice (bit positions 1 to 16) in all the signatures in the col-
lection; we keep a posting list of all signature IDs that have
a particular binary value in this slice position. Similarly
we keep a posting list for each of the 64K possible values
in every other slice position, corresponding to bit positions
17 to 32, positions 33 to 48, and so on for all slice posi-
tions. We now have an inverted-by-slice representation of
the collection of signatures. Each slice is separately inverted
with a vocabulary that is the set of all possible 16-bit binary
values. Here the similarity with conventional inverted files
ends since the processing of slice inverted lists during search
is very different as we describe next.

The creation of an ISSL table proceeds as follows: We
start from a set of binary signatures. We will focus the dis-
cussion on 1024-bit signatures, but other signature sizes are
possible and indeed used. We treat each signature as a mul-
tiple set of 16 bit slices and view the signature as a set of 64
16-bit integers. For efficiency reasons related to processor
and software architecture considerations, 16-bit slices work
well; but signature slices of other sizes are possible. We find
that this choice is adequate even as we work with web-scale
collections. The ISSL index maintains posting lists for each
slice position and each of the 65,536 possible 16-bit integer
values. Hence there are 222 = 4, 194, 304 posting lists. When
indexing a signature, each of the 64 bit slices in the signa-
ture appears in one of 64 posting lists. The specific lists are
identified by the combination of the slice position and the
binary value of the signature slice. The posting lists contain
the signature IDs of the represented signatures. To identify
all signatures that have a aparticluar binary value in a par-
ticular slice position we only need access the inverted list
identified by the slice position and the binary value. That
inverted list consists of the corresponding signature-ids.

When searching an ISSL file for a search signature, the
search signature is divided into slices in the same manner.
Each slice can be used to look up an ISSL, and all the sig-
nature IDs listed in the retrieved ISSLs can be consolidated.
Trivially, when searching for a specific signature that was
previously indexed (i.e it exists in the collection), we would

find the signature ID in each of the posting lists correspond-
ing to its 64 slices. However, this is not satisfactory for
our nearest neighbour search. In general, we are looking for
nearest signatures which are highly unlikely to be identical.
This means that we need to be able to compute the Ham-
ming distance of signatures from the search signatures by
using the ISSL postings - but these may not necessarily be
exact matches. For instance, a signature may not appear
in any of the 64 postings that correspond to the query sig-
nature, but may be exactly one bit away in each of those
slices. That would amount to a Hamming distance of 64,
and it may well be the case that this is the nearest signa-
ture. So a direct lookup of the search argument slice values
does not produce the result we seek. In order to find the
approximate nearest neighbours of the search argument we
need to process the postings in a different manner to the
way we do with conventional term-based search. The con-
ventional inverted file approach only requires access to the
postings of terms in the query. ISSL based search requires
access to not only the postings of matching signature slices,
but also to their neighbouring slices’ postings. We next de-
scribe the search process, and in the experimental section
discuss the efficiency of this approach.

3.1 Searching the ISSL table
Given a search argument (a signature) we are searching

for neighbouring signatures using the ISSL table. An ISSL
in the following is a reference to a posting list for a given slice
position and a given 16-bit binary pattern. With signatures
1024 bits wide, we need to consider the neighbourhood in
each of the 64 slices of the search argument. We consider not
only the exact-matching ISSL, but also its neighbourhood.
Given a 16-bit pattern in a signature slice, we have 1 ISSL
that matches the pattern, 16 ISSLs that have a value that
is 1 bit away, 120 ISSLs that have a value that is 2 bits
away, and so on. The search is therefore expanded with the
set of 16-bit patterns that covers a wider Hamming distance
neighbourhood.

The determination of the Hamming distance of signatures
to the search argument proceeds by consulting the ISSL ta-
ble and keeping track of the distance estimate of signatures
in the collection. Each time a signature ID is observed in an
ISSL more information is revealed about its distance from
the search argument. Clearly, if a signature ID is observed
in all 64 slices we can compute its distance to the search ar-
gument with complete accuracy. However, if the signature is
only observed in N of the 64 slices, the distance is known ac-
curately only in those N from 64 slices, and in 64−N slices it
is unknown. We can however compute a worst-case estimate
of the distance by assuming that the distance is maximal in
all unobserved slices. We can also compute a best-case dis-
tance by assuming that the unobserved slices for a given
signature will all be seen at the next Hamming distance we
process. For example, if we completed consulting the 3-bit
neighbourhood, and observed a particular signature-id in N
slices, the best-case scenario assumes we shall find the sig-
nature in the 4-bit neighbourhood in all the missing slices;
we then add 4 ∗ (64 − N) to the known distance from the
N seen slices and this is the most optimistic estimate of the
distance. For the pessimistic estimate of the distance we
add 16 ∗ (64 − N) to the known distance from the N seen
slices (i.e. we pessimistically assume it will only be seen at
the 16-bit neighbourhood in remaining slices.)

With the above, we are now in a position to progressively
expand the search neighbourhood, and as we do so we pro-
gressively improve our estimate of the nearest-neighbourhood
of a search argument. If we proceed with the neighbourhood
expansion to completion we have exact distance calculation.
Of course, this would be a very expensive process and we
are seeking to drastically improve performance. If we stop
the neighbourhood expansion early we have only partial in-
formation. We note, however, that sometimes even partial
information will suffice to completely accurately identify the
top-k nearest neighbours. We are not seeking a complete
ordering of the collection of signatures with respect to the
search argument. We are only searching for the nearest k
neighbours. It is possible to stop the search as soon as we
have observed k distinct signatures in all their 64 slices and
have the exact top-k signatures. For instance, if we are
looking for k = 10 and there exist 10 signatures that are
exactly a Hamming distance of 1 from the search argument,
then after consulting the 0-bit neighbourhood and the 1-
bit neighbourhood (17 ISSL per slice, 64 ∗ 17 = 1088 ISSLs
in total), we have already collected the top-10 neighbours
with complete accuracy and we can stop. Seeing all top-k
signatures in all slices with short distances is a very strict
requirement though; it turn out to be too strict to be of
any practical use. We conducted experiments with 1 mil-
lion random 1024-bit signatures. We search for the top-16
neighbours of one of the signatures. We stopped consult-
ing the ISSL when the distances of the top 16 signatures
are completely determined from the ISSL. What we found
is that we can only stop the search after consulting the 11-
to 13-bit neighbourhood. This is far too expensive and so
this approach is not viable.

We can stop earlier though; by keeping track of the best-
case and worst-case distances, we can stop the search when
the best-case distance of the k+1 nearest signature is larger
than the worst-case distance of the k nearest signature. At
this point the top-k can no longer change. We do not know
the exact distances of the top-k yet, but we can easily com-
pute them directly since we only need to perform k distance
calculations. This approach may seem promising at first,
but as it turns out, proceeding to the point of certainty in
set of top-k (rather than their accurate distances) is still too
expensive. With same set of 1 million random signatures, we
find that a search for the nearest 16 signatures still typically
terminates after consulting the 11-bit to 13-bit neighbour-
hood. That is not a viable approach either and requires
processing the vast majority of posting lists.

Fortunately, it is not necessary to progress to the point
of complete certainty. As the Hamming distance neigh-
bourhood is expanded in the search, the probability that
the top-k signatures will change diminishes rapidly. For in-
stance, it is possible but highly unlikely that a signature that
was never observed at a neighbourhood of 3-bits distance in
any of the 64 slices will subsequently be found at the 4-bit
distance in all of the 64 slices. Conversely, it is possible
but highly unlikely that a signature that was observed at
a distance of 0-bits in 60 slices, will be found at the 16-bit
distance in the remaining 4 unseen slices.

This brings us to the key idea in this paper: we conjecture
that in order to determine with high accuracy the neighbour-
hood of a search signature, it is not necessary to proceed
with the calculation until complete information is available.
We can stop the calculation early and have high confidence

Bits changed Lists per slice % of signatures
0 1 0.62%
1 17 7.13%
2 137 34.76%
3 697 79.62%
4 2517 98.93%
5 6885 100.00%
6 14893 100.00%
7 26333 100.00%
8 39203 100.00%
9 50643 100.00%
10 58651 100.00%
11 63019 100.00%
12 64839 100.00%
13 65399 100.00%
14 65519 100.00%
15 65535 100.00%
16 65536 100.00%

Table 1: Number of posting lists checked per slice
based on the number of bits changed in the search
slice. The third column shows the average portion
of the collection covered by this neighbourhood in a
typical document collection. Also see figure 1.

that a relatively small set of the nearest signatures, say N ,
will contain the top-k signatures with high probability. Fur-
thermore, we conjecture that when it does not contain all
of the top-k nearest, the error will be relatively small and
other almost as near signatures will be identified. So the
search is stopped after consulting ISSL that correspond to a
small hamming distance neighbourhood, a set of N nearest
signatures is selected, having N >> k, and an exhaustive
distance calculation over these N signatures is used to iden-
tify the top-k signatures. The value of k is more often than
not relatively small. It does not usually depend on the col-
lection size, but rather on the users’ reluctance to review
long result lists; this is typically determined by user time
constraints and limited patience rather than collection size.
Since k is small, we can choose N >> k for accurate selection
of the final top-k after early stopping. This approach allows
us to more accurately estimate the top-k without excessive
distance calculations over the entire collection by choosing
k << N << M where M is the collection size.

The estimation of the signature distance proceeds as fol-
lows: Initially all signatures are assumed to be at a pes-
simistic Hamming distance of 1024. As search progresses,
all signatures that have not yet been encountered in any
of the ISSL postings inspected maintain a worst case Ham-
ming distance of 1024. On the other hand, a signature that
is observed in a particular posting immediately receives a
more optimistic estimate of its distance. For instance, if
a signature is observed in an ISSL corresponding to a dis-
tance of 3 bits from the search argument slice then its worst
case Hamming distance is reduced by 13. Most nearby sig-
natures to the search argument are observed sooner rather
than later in most or all slice positions and their distances
becomes known with high acuracy. Of course, if the process
is carried through until all ISSL postings are consulted then
the distance of all signatures from the search argument is
precisely known.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

10000

20000

30000

40000

50000

60000

Search neighbourhood

L
is

ts
 c

o
n

s
u

lte
d

 p
e

r
s

lic
e

Figure 1: The relationship between the size of the
search neighbourhood and the number of posting
lists checked per slice. Derived from table 1.

It is necessary to decide on the early stopping criterion.
The number of posting lists consulted is a function of the
search-breadth in bits. Table 1 provides the number of ISSL
postings, per slice, that have to be consulted as function of
search-breadth. The third column contains the percentage
of distinct signature IDs encountered while processing the
list. This column corresponds to signatures derived from the
TREC Wall Street Journal collection of news articles1. The
percentage figure corresponds to the fraction of document-
ids seen as the ISSL posting are processed. For instance,
when the ISSLs are scanned up to a 3-bit Hamming dis-
tance from the search argument, 697 ISSL posting lists are
processed, and 79.62% of the document-ids in the collection
are encountered (at least once) in the process.

When the maximum search-breadth is lower, the amount
of processing time required is reduced as fewer posting need
to be considered. Assuming an equal distribution of signa-
tures per list2 allowing a maximum search-breadth of 3 bits
requires only 1.06% of the computational effort that would
be required for a full search up to the maximum distance of
16 bits. The tradeoff is in accuracy; but as our experiments
demonstrate, in practice the approach is highly accurate and
the tradeoff is quite attractive.

After the distances for all signatures have been deter-
mined, the nearest signatures can be reranked using a full
Hamming distance calculation to ensure that the ranking
of these signatures is precise. At higher levels of search-
breadth, more processing time is required but the likelihood
of documents that should appear in the top-k being omitted
is reduced. There are other speed-accuracy tradeoffs avail-
able; increasing the number of signatures that are reranked
using Hamming distance may result in fewer top documents
being omitted at the cost of a linear increase in processing
time.

1Tested on the Wall Street Journal collection indexed by
TopSig, averaged over 10 searches.
2Not necessarily a valid assumption for real data. For exam-
ple, TopSig signatures typically contain more off-bits than
on-bits, skewing the signature distribution towards the lists
that cover slices with fewer bits set. This is due to off-bits
being the default state of bits in a TopSig signature; any bits
unaffected by any of the terms in a document will assume
this state. Bits that are set have an equal chance of being
either on-bits or off-bits so the presence of this default state
results in more off-bits than on-bits.

4. IMPLEMENTATION
The ISSL search platform was developed on top of the

open source signature search tool TopSig and is now a part
of that tool. The tool was developed in C using pthreads for
multithreading support.

The platform was developed with a focus on 16-bit ISSL
slices. As the main justification for ISSL is performance-
related, slices widths that weren’t powers of 2 were not con-
sidered and both 8-bit and 32-bit slices were deemed in-
appropriate as 8-bit slices would not be able to substan-
tially reduce the amount of processing work required and
32-bit slices would impose too much overhead, making the
approach worthless for all but the largest of collections.

Due to the performance focus of ISSL, the approach de-
scribed was designed to work entirely within memory while
building the ISSL table and while searching it. While it
would be possible to create an implementation that works
from an ISSL table stored on disk without reading it into
memory first, this approach would take careful considera-
tion as many random accesses of the table are required.

Building the ISSL table was designed as a two-pass pro-
cess; the first pass is to determine how large each of the
posting lists are for the purpose of memory allocation and
the second pass is to fill them. Each list is stored as an array
of 32-bit integers that uniquely identify the signature within
a signature file. The s×2w lists3, along with an integer giv-
ing the number of signatures in this list are written to a file
for reading by the ISSL search tool.

The ISSL table can be read quickly if the on-disk rep-
resentation and in-memory representation of the arrays of
integers is the same. This will almost always be the case
when the ISSL table is written and read on the same ma-
chine but may not be the case if the ISSL table is moved
between machines of different endianness. The tool was de-
signed to recognise this and fall back on a slower approach
if necessary.

The amount of space taken up by the ISSL table scales
linearly with both signature width and collection size. While
a collection of 1,000,000 1024-bit signatures will take up
1000000× 1024

8
bytes or ∼ 122 megabytes of space4, the

ISSL table for this same collection will require 4(1000000×
64 + 216 × 64) bytes, or ∼ 260 megabytes.

The potentially large sizes of the ISSL table and collec-
tion can impose limitations on the collections that can be
used with ISSL depending on the hardware available as both
signature and table are stored in memory5.

The third data structure that uses a considerable amount

3s = number of slices in a signature. w = slice width (in
bits). For example, a 1024-bit signature with 16-bit slices
will have 1024/16 or 64 slices per signature. (s = 64, w =
16)
4Plus overhead; TopSig imposes a mandatory overhead of
33 +w bytes per signature, where w is the maximum length
of any document identifier. This overhead can potentially
be considerable.
5This implementation of ISSL stores both in memory. This
is not necessarily required; for example, if a limited num-
ber of searches are going to be performed on a particular
collection the scoring phase and the reranking phase can be
separated with the intermediate results stored in memory or
on disk. This implementation of ISSL was designed to cre-
ate quick responses to individual queries while keeping all
information in memory, therefore necessitating the storage
of both signatures and ISSL in memory.

of memory is the score table, which needs one element for
each signature. For simplicity 32-bit integers were used for
this implementation but 16-bit integers are fine if the sig-
nature width is lower than 216. This structure still ends
up being much smaller than the other two, at only ∼ 4
megabytes for our example 1,000,000 signature collection.
The score table is necessary as the score for any signature
may be increased by any of the posting lists; it is not feasible
to keep a top-k list or similar structure that only contains
the highest scoring signatures. As table 1 shows, most of the
signatures are touched even at relatively low search-breadth
thresholds.

The ISSL search tool begins the process to search for a
particular signature by resetting the score table to 0 and iter-
ating through the search signature, one 16-bit slice at a time.
For each slice, the Hamming distance neighbourhood array6

is iterated through until the allowable search-breadth thresh-
old is met. For example, if the allowable search-breadth
threshold is set at 4, the first 2517 values (see table 1) of
the Hamming neighbourhood array will iterated through in
the process of scoring documents. These 2517 values will
contain all possible 16-bit values with between 0 and 4 on-
bits. The current value is combined with the search slice by
exclusive or and the result, combined with the position of
the slice within the signature, identifies one list in the ISSL
table. This list is then iterated through and each signature
that appears on the list gets its score incremented by 16−n
where n is the number of on-bits in the current value in the
Hamming neighbourhood array.

After this process is complete, the score table will con-
tain scores for each signature. The top-k scores can now be
extracted from the array using a heap or similar structure7.
The top-k signatures then have their scores recomputed with
a full Hamming distance calculation and are sorted to pro-
duce the final results.

5. PERFORMANCE CONSIDERATIONS AND
SCALABILITY

ISSL searches demonstrate an improvement in compu-
tational performance over the approach of calculating the
Hamming distance with every signature in a collection; how-
ever, computational time and memory use still scale linearly
with collection size, causing problems when dealing with
large collections. However, like basic signature searching,
this approach is also inherently conducive to parallel pro-
cessing.

6To simplify determining the possible permutations of bits
that may be toggled in expanding the search neighbourhood,
the ISSL search tool precomputes a Hamming neighbour-
hood array of all possible 16-bit signatures and sorts the
array by the number of on-bits in each value. A slice can be
combined with these values with an exclusive or operation
to produce slices with the required number of bits; combin-
ing the search slice with the first element will produce the
original slice, while using last element will produce the in-
verse of the original slice. Intermediate values will produce
all possible versions of the slice with all possible permuta-
tions of flipped bits, allowing all permutations of a slice with
a certain number of bits changed to be accessed with little
further computation.
7In this implementation the top-k scores are extracted from
the array using a K-sized array that holds the K-highest
scoring signatures seen so far and replaces the signature with
the lowest score when a signature with a higher score is seen.

The TopSig implementation of ISSL developed for this
study implements basic support for parallel processing using
the pthreads library. The user can specify via configuration
file or command line the number of threads that should be
used for searching. The threads are created for each search
and each is assigned an approximately equal portion of the
posting lists in the ISSL table. Each thread processes its
assigned lists, adding scores to the score table with atomic
operations8. When all threads have terminated the main
thread continues as normal, performing the top-k extrac-
tion and Hamming distance calculations without using extra
threads. This operation is efficient as it can be implemented
without locks.

The process of extracting the top-k elements from a list
can also be parallelised and this may be beneficial for search-
ing larger collections where this operation may consume a
greater portion of the total processing time. Each thread
can perform top-k extraction on separate portions of the
list and the top-k lists can be merged at the end.

These approaches allow for performance improvements across
a system with shared memory. For larger processing tasks, it
may be useful to split the workload across multiple systems
with independent memory. Signatures are also conducive to
this task, as a signature file can be split into multiple parts
and a separate ISSL created for each to divide the memory
and processor burden across many machines. The final re-
sults can then be merged together providing the scores are
preserved.

Performance approaches may vary depending on whether
focus is on improving the performance of individual queries
as would be desirable in an interactive system or on reduc-
ing the amount of time required to process a large batch of
queries as may be desirable for cluster generation. While
the previously discussed techniques are geared towards op-
timising the former, for the latter dividing up the queries
among threads may be more effective than dividing up the
collection. The tradeoff made involves increasing the latency
between submitting the query and retrieving results in ex-
change for reducing the amount of overall processing time
required.

6. EXPERIMENTAL RESULTS
The effectiveness of ISSL searching is measured in compar-

ison to an exhaustive Hamming distance search on the same
data set. As the purpose of the ISSL approach is to pro-
vide a more efficient way of finding the signatures with the
lowest Hamming distance from the search signature, for the
purpose of evaluation the fact that the Hamming distance
inversely correlates with document similarity is considered
a ground truth.

The standard metric to evaluating the performance of
search engines is Mean Average Precision. (MAP) To get
an analogue to MAP that works in the Hamming neigh-
bourhood (where results are not marked as relevant/non-
relevant, but we nonetheless know that lower distances are
better,) we use a similar metric called Hamming Distance
Ratio. (HDR) The HDR between the lists of top-k Ham-

8 sync fetch and add(), which is portable across Intel ar-
chitectures. The C11 and C++11 language standards in-
clude support for atomic primitives; however, compiler sup-
port for these is still limited.

Breadth Random (HDR) WSJ (HDR)
0 63.44% 86.09%
1 63.56% 92.00%
2 74.55% 96.28%
3 89.48% 98.29%
4 95.69% 99.14%
5 98.97% 99.51%
6 99.59% 99.66%
7 99.94% 99.76%
8 99.98% 99.83%
9 99.99% 99.92%
10 99.99% 99.98%
11 100.00% 100.00%
12 100.00% 100.00%
13 100.00% 100.00%
14 100.00% 100.00%
15 100.00% 100.00%
16 100.00% 100.00%

Table 2: How early stopping affects performance-
the HDR of searches on random signatures and sig-
natures derived from the Wall Street Journal. Also
see figure 2.

ming distances A and B is calculated as
1

k
·

k∑
i=1

∑i
j=1 Aj∑i
j=1 Bj

.

If A and B are the same, the ratio is 1; if B is based on an
incomplete picture of the collection and hence shows larger
Hamming distances in the top-k the ratio will drop propor-
tionately; such that omissions closer to the top of the result
list will exact a harsher penalty on the final score than omis-
sions further down, much in the same way as MAP.

The quality of a given ISSL search is dependant on the
search neighbourhood (the degree to which early stopping
is performed.) As explained earlier, the search breadth also
has implications on the processing time required to run in-
dividual queries.

Table 2 shows the results of K = 100 searches on two
collections of identical size. (222,922 signatures.) The first
collection consists of signatures created from random noise
(created with a pseudorandom number generator) while the
second collection consists of signatures generated from the
Wall Street Journal (WSJ) collection with TopSig (using
splitting, a process by which longer documents are split into
multiple signatures.) We ran 60 searches on each collection,
for each search choosing a random source signature from the
same collection to search against and repeating this search
17 times for each search neighbourhood. The HDR ratios
of each search were then averaged to produce the tabulated
results.

The WSJ signature file was generated from the TREC
Ad-Hoc Wall Street Journal collection (173,252 documents)
using TopSig for indexing with the following settings:

SIGNATURE-WIDTH = 1024

#Size of signature (in bits)

SPLIT-TYPE = sentence

SPLIT-MAX = 512

SPLIT-MIN = 256

#Method of splitting long documents when creating

signatures. ’sentence’ means to split between

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
60.00%

65.00%

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

Random

WSJ

Search neighbourhood

H
D

R

Figure 2: How stopping early affects random signa-
tures and document signatures. Based on data from
table 2.

’split-min’ and ’split-max’ terms if a full stop

appears; otherwise, split at ’split-max’.

#This generally increases search quality because

#long documents can result in signatures that are

#too noisy.

SIGNATURE-DENSITY = 21

SIGNATURE-SEED = 0

SIGNATURE-METHOD = SKIP

#Signature-density refers to the proportion of bits

#in the signature to set to either +1 or -1. SKIP

#is a method of signature generation and 0 is the

#random seed to start with for generating terms.

CHARMASK = alpha

#Characters in the file to treat as words for the

#purpose of indexing. Other characters are treated

#as whitespace.

STEMMER = porter

#Stemming method to use; this refers to the

#Porter stemming algorithm.

STOPLIST = data/stopwords.long.txt

#Words that appear in the stoplist are discarded.

#This stoplist is provided with TopSig.

The splitting configuration options result in a file contain-
ing 222,922 signatures, an expansion of ∼ 128.67%.

The random signature file was generated from the WSJ
signature file using the create-random-sigfile tool packaged
with TopSig, which generates a copy of an existing signature
file with the actual signature data overwritten with repeated
calls to the C standard library function rand().

These performance tests were run on an i7 950 4-core pro-
cessor running at 3.06GHz.

The ISSL table generated for the each signature file is
70.4mb. This table was generated from the signature file in
7 seconds on the testing platform.

The greater HDR scores of document-derived signatures
when early stopping is applied is due to the natural clusters
that documents form, resulting in the closest documents in
the WSJ collection being closer on average than those in the
random collection. Lower signature distances are more ef-
fective in conjunction with ISSL because they have a higher

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.00

50.00

100.00

150.00

200.00

250.00

ISSL

Exhaustive

Search neighbourhood

Q
u

e
ry

 ti
m

e
 (

m
s

)

Figure 3: The relationship between early stopping
and search time. Based on data from table 3.

likelihood of appearing in the early posting lists. A signature
with a Hamming distance of 200 (assuming 1,024 bit signa-
tures and 16-bit slices) will have an average of 200

64
= 3.125

bits changed per slice, meaning a search with a 3 or 4-bit
breadth will likely find this signature in many posting lists.
With a distance of 400, the average per-slice distance of 6.25
will require a larger search breadth to be effective.

Widening the Hamming neighbourhood by increasing the
search breadth improves the HDR scores by bringing in
more documents, but this improvement comes with a cost
to search speed. Table 3 shows how searching the WSJ col-
lection takes longer per query as the search breadth is in-
creased. As figure 3 shows, the time spent on each search
correlates with the number of posting lists (compare with
figure 1) that need to be considered for that search breadth.

Multithreading was used with 4 threads and 10,000 queries
used to amortise the average query execution time and re-
duce the influence of the overhead time required to read the
signature file and ISSL into memory on the first run. The
appropriate TopSig configuration information for each test
was as follows:

SEARCH-DOC-FIRST = 0

SEARCH-DOC-LAST = 9999

#First and last signatures to search for. This is

#inclusive so these parameters will search for the

#first 10,000 signatures that appear in the

#signature file.

SEARCH-DOC-THREADS = 4

#Number of threads to use when searching. The main

#thread will spawn these threads and resume once

#these threads have completed their tasks.

SEARCH-DOC-TOPK = 100

#Number of documents to retrieve.

The time required to search this collection exhaustively
using TopSig query search is 21.58ms, putting it approxi-
mately on par with using a 4-bit search breadth. It should
be noted, however, that TopSig’s exhaustive search is more
mature and hence more optimised than the ISSL search pro-
cess. There may be greater potential to increase search per-
formance in this area.

Of course, as mentioned earlier, the search breadth is not
the only way to improve search quality. The number of

Breadth Query time (ms) Lists per slice
0 3.74 1
1 3.88 17
2 4.98 137
3 8.74 697
4 19.24 2517
5 40.23 6885
6 72.95 14893
7 116.05 26333
8 161.84 39203
9 199.34 50643
10 221.15 58651
11 226.14 63019
12 231.37 64839
13 233.00 65399
14 233.78 65519
15 232.81 65535
16 233.32 65536

Table 3: The relationship between early stopping
and search time. Searching more posting lists re-
quires spending proportionately more time. Based
on searches of the WSJ collection. Also see figure 3.

50
100

150
200

250
300

350
400

450
500

550
600

650
700

750
800

850
900

950
1000

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

3-bit

0-bit

Top-? documents retrieved

Q
u

e
ry

 ti
m

e
 (

m
s

)

Figure 4: The relationship between top-k and search
time. Based on data from table 4.

documents returned also matters as, when early stopping is
invoked, the top-k documents are the ones reranked using
the full Hamming distance. As the initial ranking that de-
termines the top-k is based on incomplete information when
early stopping is invoked returning more documents can re-
turn higher-quality results.

Table 4 shows how increasing the value of k increases both
search time and HDR. The improvement from increasing
the number of results returned is much greater for the 0-bit
search breadth than the 3-bit search breadth; however, as
the same table shows, the increases in HDR from increasing
the search breadth are more efficient. For example, using a
0-bit search breadth and returning the top 500 results takes
7.57ms/query and gives a HDR of 92.04%, while using a 3-
bit search breadth and returning the top 50 results takes
7.51ms/query and gives a 98.34% HDR. Therefore, while
increasing the value of k can be situationally useful, greater
benefits come from increasing the search breadth.

The Wikipedia XML Corpus[1] is a larger collection, con-
sisting of 2,666,190 documents. When indexed with de-

blah 0-bit 3-bit
Top-k Time (ms) HDR Time (ms) HDR

50 3.18 84.15% 7.51 98.34%
100 3.71 87.06% 8.94 99.12%
150 4.19 88.52% 10.29 99.35%
200 4.66 89.49% 10.59 99.48%
250 5 90.22% 11.96 99.56%
300 5.53 90.77% 12.97 99.61%
350 5.98 91.16% 13.77 99.65%
400 6.54 91.50% 15.27 99.69%
450 6.97 91.80% 16.55 99.71%
500 7.57 92.04% 18.94 99.73%
550 8.03 92.26% 19.03 99.75%
600 8.61 92.43% 20.21 99.77%
650 9.27 92.58% 22.05 99.78%
700 9.84 92.70% 23.99 99.79%
750 10.37 92.81% 25.34 99.80%
800 11.01 92.92% 27.68 99.81%
850 11.72 93.00% 28.84 99.82%
900 12.53 93.08% 30.6 99.83%
950 13.22 93.15% 32.9 99.84%
1000 13.74 93.21% 35.29 99.84%

Table 4: The relationship between top-k, search time
and HDR. Increasing the number of documents re-
sults in a linear increase in search time. Based on
searches of the WSJ collection. Also see figures 4
and 5.

100
150

200
250

300
350

400
450

500
550

600
650

700
750

800
850

900
950

1000

60%

65%

70%

75%

80%

85%

90%

95%

100%

3-bit

0-bit

Top-? documents retrieved

H
D

R

Figure 5: The relationship between top-k and HDR
with 0-bit and 3-bit search breadths. Based on data
from table 4.

Breadth Query time (ms) Ratio to WSJ
0 46.37 12.4:1
1 49.5 12.8:1
2 64.22 12.9:1
3 128.73 14.7:1
4 311.44 16.2:1
5 720.54 17.9:1
6 1406.73 19.3:1
7 2377.4 20.5:1
8 3339.28 20.6:1
9 4199.53 21.1:1
10 4762.97 21.5:1
11 4981.49 22.0:1
12 5135.17 22.2:1
13 5118.8 22.0:1
14 5096.39 21.8:1
15 5157.97 22.2:1
16 5142.36 22.0:1

Table 5: Time required to search the Wikipedia
XML corpus. The ratio column shows how it scales
in time compared to the search of the same breadth
in table 3, a collection 1/16th of the size. Also see
figure 6.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1000

2000

3000

4000

5000

6000

ISSL

Exhaustive

Search neighbourhood

Q
u

e
ry

 ti
m

e
 (

m
s

)

Figure 6: Time required to search the Wikipedia
XML corpus. Based on data from table 5.

fault settings in TopSig the resulting signature file contains
3,606,901 signatures. Using 1024-bit signatures it results in
an ISSL table 896mb large. It takes 1 minute and 30 seconds
to generate the ISSL table on the testing platform.

This is a collection ∼ 16× the size of the Wall Street
Journal collection and, as shown in table 5, takes corre-
spondingly longer to query. This makes sense, as the two
time-consuming portions of the ISSL task (adding scores
from the posting lists and extracting the top-k) both scale
in complexity linearly with the size of the collection.

The time required to search this collection exhaustively
using TopSig query search is 320.4ms, once again putting it
approximately on par with using a 4-bit search breadth.

So far we have not tested ISSL searching on any larger
data sets, such as ClueWeb09B. Extrapolating from the data
we have already, assuming the linear increase in query time
we saw going from WSJ to Wikipedia holds we can esti-
mate that it will take approximately 1.6 seconds per query
to search the 50 million document collection (indexed with-

out splitting) on the testing platform. With spliting, default
settings for TopSig create a 90 million signature file, requir-
ing approximately 2.9 seconds per query.

The amount of memory needed for the ISSL searching of
ClueWeb09B (without splitting) can be approximated with

the same formulas as before:
50000000× 1024

8
bytes (∼

5.96gb) for the signature file plus 4(50000000×64+216×64)
bytes (∼ 11.94gb), or∼ 17.9 gigabytes (plus overhead for the
signature file headers.) This is not beyond the reach of most
systems, although the larger ClueWeb09 A collection (500
million English documents) may be; hardware with enough
memory to search ClueWeb09 A with ISSLs does exist, al-
though at 16 seconds per query it may be desirable to opt
for a clustered approach instead.

7. LIMITATIONS
The nature of the ISSL approach results in certain limita-

tions that do not apply to an exhaustive Hamming search.
First of all, the requirement that the ISSL table remain

in memory during processing (as the search process involves
highly random access) limits the use of ISSL for collections
that expand to an ISSL table that is too large to fit in mem-
ory. For clustered approaches the collection can be split
over multiple machines with a separate ISSL table created
for each, simultaneously improving search time and reducing
the memory requirement for the individual machines; how-
ever, when only one machine is available it may be faster
to use on-disk exhaustive search as opposed to on-disk ISSL
search.

Second, the ISSL approach is limited to cases where search-
ing with the entire search signature is desirable. While the
individual slices can be turned on and off as required (to im-
plement field-based indexing and search, for example) there
is no feasible way to facilitate disabling the individual bits
of a signature. This is a serious drawback for query-based
searching, which relies on masking off bits that are unset in
the query signature (which, by nature will be very sparse
due to containing far fewer terms than a document) as both
off- and on-bits in a signature indicate the possible presence
of certain terms. Performing a dense search with a query sig-
nature will result in false matches against documents with
more off-bits.

Finally, ISSL searching loses most of its advantages when
dealing with collections where typical searches result in large
Hamming distances to the closest signatures. Unfortunately,
this limits the use of ISSL in situations other than near-
duplicate detection. This is due to the number of differing
bits per slice frequently being too high to be captured in
the search breadths (3 or small) that provide the greatest
performance improvements over exhaustive searching.

8. REPRODUCIBILITY
The ISSL search tool was built into TopSig, which is avail-

able at http://www.topsig.org in the SVN repository. It
is open source and available under the GPLv3 license. Ex-
cept where otherwise declared, all configuration settings re-
main at their defaults. The Wall Street Journal corpus
is part of the TREC Research Collection volumes 1 and
2. The Wikipedia XML Corpus is available from http:

//www.mpi-inf.mpg.de/departments/d5/software/inex/.

http://www.topsig.org
http://www.mpi-inf.mpg.de/departments/d5/software/inex/
http://www.mpi-inf.mpg.de/departments/d5/software/inex/

9. CONCLUSION
We have presented the Indexed Signature Slice List ap-

proach to improving the speed of signature searching with-
out a considerable loss to search fidelity. While the effective
use of ISSLs is limited to certain situations (such as near-
duplicate detection and some clustering approaches) in those
situations they can provide great increases in speed over tra-
ditional exhaustive approaches. As the cost of searching the
ISSL table grows linearly with the size of the collection it
cannot be said that the scalability problem of signature-
based searching has been solved; however, it can be said
that searching is a bit faster with this approach.

10. REFERENCES
[1] Ludovic Denoyer and Patrick Gallinari. The Wikipedia

XML Corpus. SIGIR Forum, 2006.

[2] C. Faloutsos and S. Christodoulakis. Signature files: An
access method for documents and its analytical
performance evaluation. ACM Transactions on
Information Systems (TOIS), 2(4):267–288, 1984.

[3] S. Geva and C.M. De Vries. Topsig: Topology
preserving document signatures. 2011.

[4] R.W. Hamming. Error detecting and error correcting
codes. Bell System technical journal, 29(2):147–160,
1950.

[5] Gurmeet Singh Manku, Arvind Jain, and Anish
Das Sarma. Detecting near-duplicates for web crawling.
In Proceedings of the 16th international conference on
World Wide Web, pages 141–150. ACM, 2007.

[6] J. Zobel, A. Moffat, and K. Ramamohanarao. Inverted
files versus signature files for text indexing. ACM
Transactions on Database Systems (TODS),
23(4):453–490, 1998.

	Document Signatures
	Near-Duplicate Detection
	Indexed Signature Slice Lists
	Searching the ISSL table

	Implementation
	Performance Considerations and Scalability
	Experimental Results
	Limitations
	Reproducibility
	Conclusion
	References

