
Indexed Signature Slice Lists for Fast Nearest-Neighbours
Search

ABSTRACT
Signature Files in the Information Retrieval context are a
technique used to represent documents, images and other
abstract objects with binary signatures of fixed length. The
signatures have the property that they preserve in signa-
ture space the mutual topological relationships that exist in
the original representation of objects. The original repre-
sentation is typically some form of very high-dimensional,
often highly sparse, feature vector derived with some prob-
abilistic, language model, or other suitable feature extrac-
tion/definition approach. Binary signatures offer a compres-
sion of the original representation onto a lower dimensional
and dense representation. It facilitates efficient similarity
computations using the Hamming distance[4] measure. This
efficiency motivates most applications of signatures. Local-
ity Sensitive Hashing is a method of dimensionality reduc-
tion that uses binary signatures often used in near-duplicate
detection in image or text document collections. There are
numerous publications about successful applications of Sig-
nature files. While signatures offer an acceptable measure
of similarity, performing a search with a given search argu-
ment (a signature) requires a Hamming distance calculation
against every signature in a collection. This quickly becomes
excessive when dealing with web-sized collections, and there
lies the problem of scalability. This paper addresses the
scalability problem in signature search. We describe a new
method of indexing and searching large binary signature col-
lections to efficiently find similar signatures in very large
collections. Experimental results demonstrate that our ap-
proach is effective in finding a set of nearest signatures to a
given search argument (signature) with high efficiency and
high fidelity.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Clustering,
Retrieval Models, Search Process

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

General Terms
Algorithms, Experimentation, Performance, Theory

Keywords
Document Signatures, Near-Duplicate Detection

1. DOCUMENT SIGNATURES
Topological signatures, as described by Geva et al[3] are a

refinement on Locality Sensitive hashing and the approach
of using file signatures to represent documents, originally
explored by Faloutsos and Christodoulakis[2]. These ini-
tial approaches were shown to be inferior to inverted file
approaches by Zobel et al.[5] Topology preserving signa-
tures in our work are derived from a document-term ma-
trix, randomly-projected onto a compact N dimensional bi-
nary {±1}N subspace to produce a new, lower-order matrix
(that can be efficiently stored) while preserving the topo-
logical relationships of documents in the original document-
term matrix. The geometric interpretation of this projection
is that the document collection is mapped from its original
vector-space representation as a term-document weight ma-
trix, onto the {±1}N hypercube. Each document is mapped
to a vertex of the hypercube, and the property of the random
projection is that it largely preserves the relative pairwise
distances between points in input space, on the hypercube.
Furthermore, Geva et al describe an effective approach to
performing ad-hoc keyword based search with signatures,
that overcomes the difficulties identified in earlier models. A
complete description of this approach is given in [3], where
it is demonstrated that for early precision the use of signa-
tures for ad-hoc retrieval leads to search performance that is
not statistically different from state of the art models such
as BM25, Language Models and DFR.

For the sake of completeness, we briefly describe some de-
tails about that file signature approach. The original Falous-
tos et al approach is essentially a bloom filter, although not
explicitly described as such in the original paper[2]. Terms
in a document are hashed to create pseudorandom sparse bit
strings that are combined together (through a bitwise OR
operator) to create a document signature. Queries are then
tested by comparing the signatures of terms in the query (de-
rived in the same manner) with the document signatures.
If all the set bits in the query signature are also set in a
document signature, there is a possibility that the terms ap-
pear in the document. Since it is possible for these term bit
strings to combine to create a false positive for a term not
present in the document, the document must be scanned to

ensure that the terms in the query are actually present. This
is characteristic of bloom filters, which are highly efficient
but do result in false positives. The rate of false positives
can be reduced by increasing the size of the bit strings at
the expense of a greater storage requirement.

Signatures generated in this method can be used for in-
formation retrieval but have significant drawbacks, including
the necessity of storing the terms present in the document
to avoid false positives, and the cost of eliminating those be-
come highly excessive. They also require extensive amounts
of storage space to ensure signatures are long enough to re-
duce the occurrence of these false positives.

Locality Sensitive Hashing, as implemented and refined in
the TopSig approach of [3], fixes most of the problems iden-
tified with document signatures in terms of retrieval perfor-
mance. However, one problem remained unsolved in that
paper- the scalability of the approach is still limited while
it relies on sequential exhaustive Hamming distance calcu-
lations. The approach required performing a Hamming dis-
tance calculation against every signature in the collection
and it quickly becomes prohibitive when collection sizes be-
come large enough. An approach is therefore needed to avoid
performing this calculation against every signature, while
still retrieving the nearest signatures.

2. INDEXED SIGNATURE SLICE LISTS
Indexed Signature Slice Lists (ISSL) is a hybrid approach

that combines the inverted file approach with the signature
file approach. The purpose of an ISSL file is to provide
an index into a signature file to allow searching for sig-
natures close (in terms of Hamming distance) to a given
search signature. In a normal inverted file scheme the post-
ings correspond to terms in the document collection and the
search process combines those postings for a given set of
query terms to produce a ranked list of results. In an anal-
ogous manner, ISSL are posting lists, where signature slice
values correspond to terms, and the postings correspond to
signatures in the collection. The signature slices of a query
signature are used to combined the respective ISSL postings
during search to provide a ranked list of signatures.

The creation of ISSL proceeds as follows. We start from
a set of binary signatures. We will focus the discussion on
1024 bit signatures, but other signature sizes are possible
and indeed used. We treat each signature as a multiple
set of 16 bit slices and view the signature as a set of 64
16-bit integers. For efficiency reasons related to processor
and software architecture considerations, 16-bit slices work
well, but signature slices of other sizes are possible. We
find that this choice is adequate even as we work with web-
scale collections. The ISSL index maintains posting lists for
each slice position and each of the 65,536 possible 16-bit
integer values. Hence there are 222 = 4, 194, 304 posting
lists. When indexing a signature, each of the 64 bit slices in
the signature appears in one of 64 posting lists. The specific
lists are identified by the combination of the slice position
and the integer value of the signature slice. The posting lists
contain the signature IDs of the represented signatures.

When searching an ISSL file for a search signature, the
search signature is divided into slices in the same way and
each slice is used to look up an ISSL. All the signature IDs
listed in the retrieved ISSL are consolidated. Trivially, when
searching for a specific signature that was previously in-
dexed, we would find the signature ID in each of the posting

lists corresponding to its 64 slices. In general however we are
looking for nearest signatures which are highly unlikely to
be identical. This means that we need to be able to compute
the Hamming distance of signatures from the search signa-
tures by using the ISSL postings. For instance, a signature
may not appear in any of the 64 postings that correspond
to the query signature, but may be exactly one bit away
in each of those slices. That would amount to a Hamming
distance of 64, and it may well be the case that this is the
nearest signature. In order to find the approximate near-
est neighbours of the search argument we need to process
the postings in a different manner to the way we do with
conventional term-based search. The conventional inverted
file approach only requires access to the posting of terms
in the query. ISSL based search requires access not only to
posting of matching signature slices, but also to their neigh-
bouring slices posting. We now describe the search process,
and in the experimental section discuss the efficiency of this
approach.

2.1 Searching the ISSL
Given a search argument - a signature - we are searching

for neighbouring signatures using the ISSL index. An ISSL
in the following is a reference to a posting list for a given slice
position and a given 16-bit binary pattern. With signatures
1024 bits wide, we need to consider the neighbourhood in
each of the 64 slices of the search argument. We consider
not only the exact match ISSL, but also its neighbourhood.
Given a 16-bit pattern in a signature slice, we have 1 exact
match ISSL, 16 ISSL that have a value that is 1 bit away, 120
ISSL that have a value that is 2 bits away, and so on. The
search is therefore expanded with the set of 16-bit patterns
that covers a wider Hamming distance neighbourhood.

The determination of the Hamming distance of signatures
to the search argument proceeds by consulting the ISSL and
keeping track of the distance estimate of signatures in the
collection. Each time a signature-id is observed in an ISSL
more information is revealed about its distance from the
search argument. Clearly, if a signature-id is observed in
all 64 slices, then we can compute its distance to the search
argument with complete accuracy. However, if the signa-
ture is only observed in N of the 64 slices, then the distance
is known accurately only in those N from 64 slices, and in
64 − N slices it is unknown. We can however compute a
worst-case estimate of the distance by assuming that the
distance is maximal in all unobserved slices. We can also
compute a best-case distance by assuming that the unob-
served slices for a given signature will all be seen at the next
Hamming distance we process. For example, if we completed
consulting the 3-bit neighbourhood, and observed a partic-
ular signature-id in N slices, the best-case scenario assumes
we shall find the signature in the 4-bit neighbourhood in all
the missing slices; we then add 4∗(64−N) to the known dis-
tance from the N seen slices and this is the most optimistic
estimate of the distance. For the pessimistic estimate of the
distance we add 16 ∗ (64 − N) to the known distance from
the N seen slices (i.e. we pessimistically assume it will only
be seen at the 16-bit neighbourhood in remaining slices.)

With the above, we are now in a position to progres-
sively expand the search neighbourhood, and as such we
do so to progressively improve our estimate of the nearest-
neighbourhood of a search argument. If we proceed with
the neighbourhood expansion to completion we have exact

distance calculation. Of course, this would be a very ex-
pensive process and we are seeking to drastically improve
performance. If we stop the neighbourhood expansion early
we have only partial information. We note, however, that
sometimes even partial information will suffice to completely
accurately identify the top-k nearest neighbours. We are not
seeking a complete ordering of the collection of signatures
with respect to the search argument. We are only search-
ing for the nearest K neighbours. It is possible to stop the
search as soon as we have observed K distinct signatures in
all their 64 slices and have the exact top-k signatures. For
instance, if we are looking for k = 10 and there exist 10
signatures that are exactly a Hamming distance of 1 from
the search argument, then after consulting the 0-bit and 1-
bit neighbourhood (17 ISSL per slice, 64 ∗ 17 = 1088 ISSL
in total), we have already collected the top 10 neighbours
with complete accuracy and we can stop. Seeing all top-k
signatures in all slices with short distance is a very strict
requirement though. It turn out to be too strict to be of
any practical use. We conducted experiments with 1 million
random 1024-bit signatures. We search for the top-16 neigh-
bours of one of the signatures. We stop consulting the ISSL
when the distances of the top-16 signatures are completely
determined from the ISSL. What we find is that we can only
stop the search after consulting the XXX − bit neighbour-
hood. This is far too expensive and so this approach is not
viable.

We can stop earlier though - by keeping track of the best-
case and worst-case distances, we can stop the search when
the best-case distance of the k+1 nearest signature is larger
than the worst-case distance of the k nearest signature. At
this point the top-k can no longer change. We do not know
the exact distances of the top-k yet, but we can easily com-
pute them directly since we only need to perform k distance
calculations. This approach may seem promising at first,
but as it turns out, proceeding to the point of certainty in
set of top-k (rather than their accurate distances) is still too
expensive. With same set of 1 million random signatures, we
find that a search for the nearest 16 signatures typically ter-
minates after consulting the 11-bit to 13-bit neighbourhood.
That is not a viable approach either and requires processing
of the vast majority of posting.

Fortunately, it is not necessary to progress to the point
of complete certainty. As the Hamming distance neigh-
bourhood is expanded in the search, the probability that
the top-k signatures will change diminishes rapidly. For in-
stance, it is possible but highly unlikely that a signature that
was never observed at a neighbourhood of 3-bits distance in
any of the 64 slices will subsequently be found at the 4-bit
distance in all of the 64 slices. Conversely, it is possible
but highly unlikely that a signature that was observed at
a distance of 0-bits in 60 slices, will be found at the 16-bit
distance in the remaining 4 unseen slices.

This brings us to the key idea in this paper: we con-
jecture that in order to determine with high accuracy the
neighbourhood of a search signature, it is not necessary to
proceed with the calculation until complete information is
available. We can stop the calculation early and have high
confidence that a relatively small set of the nearest signa-
tures will contain the top-k signatures with high probability.
Furthermore, we conjecture that when it does not contain all
of the top-k nearest, the error will be relatively small and
other almost as near signatures will be identified. So the

search is stopped after consulting ISSL that correspond to a
small hamming distance neighbourhood, a set of N nearest
signatures is selected, and an exhaustive distance calculation
over these N signatures is used to identify the top-k signa-
tures. The value of k is more often than not relatively small.
It does not usually depend on the collection size, but rather
on the users’ reluctance to review long result lists; this is
typically determined by user time constraints and limited
patience rather than collection size. Since k is small, we can
choose N >> k for choosing the final top-k after early stop-
ping. This choice allows us to more accurately estimate the
top-k without excessive distance claculations over the entire
collection.

The estimation of the signature distance proceeds as fol-
lows. Initially all signatures are assumed to be at a pes-
simistic Hamming distance of 1024. As search progresses,
all signatures that have not yet been encountered in any
of the ISSL postings inspected maintain a worst case Ham-
ming distance of 1024. On the other hand, a signature that
is observed in a particular posting immediately receives a
more optimistic estimate of its distance. For instance, if
a signature is observed in an ISSL corresponding to a dis-
tance of 3 bits from the search argument slice then its worst
case Hamming distance is reduced by 13. Most nearby sig-
natures to the search argument are observed sooner rather
than later in most or all slice positions and their distances
becomes known with high acuracy. Of course, if the process
is carried through until all ISSL postings are consulted then
the distance of all signatures from the search argument is
precisely known.

It is necessary to decide on the early stopping criterion.
The number of posting lists consulted is a function of the
search-breadth in bits. Table 1 provides the number of ISSL
postings, per slice, that have to be consulted as function of
search-breadth. The third column contains the percentage
of distinct signature IDs encountered while processing the
list. This column corresponds to signatures derived from the
TREC Wall Street Journal collection of news articles. The
percentage figure corresponds to the fraction of document-
ids seen as the ISSL posting are processed. For instance,
when the ISSL are scanned up to 3-bit Hamming distance
from the search argument, 697 ISSL posting lists are pro-
cessed, and 79.62% of the document-ids in the collection are
encountered (at least once) in the process.

When the maximum search-breadth is lower, the amount
of processing time required is reduced as fewer posting need
to be considered. Assuming an equal distribution of signa-
tures per list2 allowing a maximum search-breadth of 3 bits
requires only 1.06% of the computational effort that would
be required for a full search up to the maximum distance of
16 bits. The tradeoff is in accuracy, but as our experiments
demonstrate, in practice the approach is highly accurate and
the tradeoff is quite attractive.

1Tested on the Wall Street Journal collection indexed by
TopSig, averaged over 10 searches.
2Not necessarily a valid assumption for real data. For exam-
ple, TopSig signatures typically contain more off-bits than
on-bits, skewing the signature distribution towards the lists
that cover slices with fewer bits set. This is due to off-bits
being the default state of bits in a TopSig signature; any bits
unaffected by any of the terms in a document will assume
this state. Bits that are set have an equal chance of being
either on-bits or off-bits so the presence of this default state
results in more off-bits than on-bits.

Bits changed Lists checked % of signatures
0 1 0.62%
1 17 7.13%
2 137 34.76%
3 697 79.62%
4 2517 98.93%
5 6885 100.00%
6 14893 100.00%
7 26333 100.00%
8 39203 100.00%
9 50643 100.00%
10 58651 100.00%
11 63019 100.00%
12 64839 100.00%
13 65399 100.00%
14 65519 100.00%
15 65535 100.00%
16 65536 100.00%

Table 1: Number of posting lists checked per slice
based on the number of bits toggled in the search
slice. The third column shows the average portion
of the collection covered by this neighbourhood in a
typical document collection1.

After the distances for all signatures have been deter-
mined, the nearest signatures can be reranked using a full
Hamming distance calculation to ensure that the ranking
of these signatures is precise. At higher levels of search-
breadth, more processing time is required but the likelihood
of documents that should appear in the top-k being omitted
is reduced. There are other speed-accuracy tradeoffs avail-
able; increasing the number of signatures that are reranked
using Hamming distance may result in fewer top documents
being omitted at the cost of a linear increase in processing
time.

3. IMPLEMENTATION
The ISSL search platform was developed on top of the

open source signature search tool TopSig and is now a part
of that tool. The tool was developed in C using pthreads for
multithreading support.

The platform was developed with a focus on 16-bit ISSL
slices. As the main justification for ISSL is performance-
related, slices widths that weren’t powers of 2 were not con-
sidered and both 8-bit and 32-bit slices were deemed in-
appropriate as 8-bit slices would not be able to substan-
tially reduce the amount of processing work required and
32-bit slices would impose too much overhead, making the
approach worthless for all but the largest of collections.

Due to the performance focus of ISSL, the approach de-
scribed was designed to work entirely within memory while
building the ISSL table and while searching it. While it
would be possible to create an implementation that works
from an ISSL table stored on disk without reading it into
memory first, this approach would take careful considera-
tion as many random accesses of the table are required.

Building the ISSL table was designed as a two-pass pro-
cess; the first pass is to determine how large each of the
posting lists are for the purpose of memory allocation and
the second pass is to fill them. Each list is stored as an array

of 32-bit integers that uniquely identify the signature within
a signature file. The s×2w lists3, along with an integer giv-
ing the number of signatures in this list are written to a file
for reading by the ISSL search tool.

The ISSL table can be read quickly if the on-disk rep-
resentation and in-memory representation of the arrays of
integers is the same. This will almost always be the case
when the ISSL table is written and read on the same ma-
chine but may not be the case if the ISSL table is moved
between machines of different endianness. The tool was de-
signed to recognise this and fall back on a slower approach
if necessary.

The amount of space taken up by the ISSL table scales
linearly with both signature width and collection size. While
a collection of 1,000,000 1024-bit signatures will take up
1000000× 1024

8
bytes or ∼ 122 megabytes of space4, the

ISSL table for this same collection will require 4(1000000×
64 + 216 × 64) bytes, or ∼ 260 megabytes.

The potentially large sizes of the ISSL table and collec-
tion can impose limitations on the collections that can be
used with ISSL depending on the hardware available as both
signature and table are stored in memory5.

The third data structure that uses a considerable amount
of memory is the score table, which needs one element for
each signature. For simplicity 32-bit integers were used for
this implementation but 16-bit integers are fine if the signa-
ture width is lower than 216. This structure still ends up be-
ing much smaller than the other two, at only ∼ 4 megabytes
for our example 1,000,000 signature collection. The score
table is necessary as the score for any signature may be in-
creased by any of the posting lists; it is not feasible to keep a
top-K list or similar structure that only contains the highest
scoring signatures. As table 1 shows, most of the scores are
touched even at relatively low search-breadth thresholds.

The ISSL search tool begins the process to search for a
particular signature by resetting the score table to 0 and iter-
ating through the search signature, one 16-bit slice at a time.
For each slice, the Hamming distance neighbourhood array6

is iterated through until the allowable search-breadth thresh-
old is met. For example, if the allowable search-breadth
threshold is set at 4, the first 2517 values (see table 1) of
the Hamming neighbourhood array will iterated through in
the process of scoring documents. These 2517 values will
contain all possible 16-bit values with between 0 and 4 on-
bits. The current value is combined with the search slice by
exclusive or and the result, combined with the position of
the slice within the signature, identifies one list in the ISSL

3s = number of slices in a signature. w = slice width (in
bits). For example, a 1024-bit signature with 16-bit slices
will have 1024/16 or 64 slices per signature. (s = 64, w =
16)
4Plus overhead; TopSig imposes a mandatory overhead of
33 +w bytes per signature, where w is the maximum length
of any document identifier. This overhead can potentially
be considerable.
5This implementation of ISSL stores both in memory. This
is not necessarily required; for example, if a limited num-
ber of searches are going to be performed on a particular
collection the scoring phase and the reranking phase can be
separated with the intermediate results stored in memory or
on disk. This implementation of ISSL was designed to cre-
ate quick responses to individual queries while keeping all
information in memory, therefore necessitating the storage
of both signatures and ISSL in memory.

table. This list is then iterated through and each signature
that appears on the list gets its score incremented by 16−n
where n is the number of on-bits in the current value in the
Hamming neighbourhood array.

After this process is complete, the score table will contain
scores for each signature. The top-K scores can now be ex-
tracted from the array using a heap or similar structure7.
The top-K signatures then have their scores recomputed
with a full Hamming distance calculation and are sorted to
produce the final results.

4. PERFORMANCE CONSIDERATIONS AND
SCALABILITY

ISSL searches demonstrate an improvement in compu-
tational performance over the approach of calculating the
Hamming distance with every signature in a collection; how-
ever, computational time and memory use still scale linearly
with collection size, causing problems when dealing with
large collections. However, like basic signature searching,
this approach is also inherently conducive to parallel pro-
cessing.

The TopSig implementation of ISSL developed for this
study implements basic support for parallel processing using
the pthreads library. The user can specify via configuration
file or command line the number of threads that should be
used for searching. The threads are created for each search
and each is assigned an approximately equal portion of the
posting lists in the ISSL table. Each thread processes its
assigned lists, adding scores to the score table with atomic
operations8. When all threads have terminated the main
thread continues as normal, performing the top-K extrac-
tion and Hamming distance calculations without using extra
threads. This operation is efficient as it can be implemented
without locks.

The process of extracting the top-K elements from a list
can also be parallelised and this may be beneficial for search-
ing larger collections where this operation may consume a
greater portion of the total processing time. Each thread
can perform top-K extraction on separate portions of the
list and the top-K lists can be merged at the end.

These approaches allow for performance improvements across
a system with shared memory. For larger processing tasks, it
may be useful to split the workload across multiple systems
with independent memory. Signatures are also conducive to

6To simplify determining the possible permutations of bits
that may be toggled in expanding the search neighbourhood,
the ISSL search tool precomputes a Hamming neighbour-
hood array of all possible 16-bit signatures and sorts the
array by the number of on-bits in each value. A slice can be
combined with these values with an exclusive or operation
to produce slices with the required number of bits; combin-
ing the search slice with the first element will produce the
original slice, while using last element will produce the in-
verse of the original slice. Intermediate values will produce
all possible versions of the slice with all possible permuta-
tions of flipped bits, allowing all permutations of a slice with
a certain number of bits changed to be accessed with little
further computation.
7In this implementation the top-K scores are extracted from
the array using a K-sized array that holds the K-highest
scoring signatures seen so far and replaces the signature with
the lowest score when a signature with a higher score is seen.
8 sync fetch and add(), which is portable across Intel ar-
chitectures.

this task, as a signature file can be split into multiple parts
and a separate ISSL created for each to divide the memory
and processor burden across many machines. The final re-
sults can then be merged together providing the scores are
preserved.

Performance approaches may vary depending on whether
focus is on improving the performance of individual queries
as would be desirable in an interactive system or on reduc-
ing the amount of time required to process a large batch of
queries as may be desirable for cluster generation. While
the previously discussed techniques are geared towards op-
timising the former, for the latter dividing up the queries
among threads may be more effective than dividing up the
collection. The tradeoff made involves increasing the latency
between submitting the query and retrieving results in ex-
change for reducing the amount of overall processing time
required.

5. EXPERIMENTAL RESULTS

6. CONCLUSION

7. REFERENCES
[1] J. Callan, M. Hoy, C. Yoo, and L. Zhao. Clueweb09

data set. boston. lti. cs. cmu. edu, Jan, 2009.

[2] C. Faloutsos and S. Christodoulakis. Signature files: An
access method for documents and its analytical
performance evaluation. ACM Transactions on
Information Systems (TOIS), 2(4):267–288, 1984.

[3] S. Geva and C.M. De Vries. Topsig: Topology
preserving document signatures. 2011.

[4] R.W. Hamming. Error detecting and error correcting
codes. Bell System technical journal, 29(2):147–160,
1950.

[5] J. Zobel, A. Moffat, and K. Ramamohanarao. Inverted
files versus signature files for text indexing. ACM
Transactions on Database Systems (TODS),
23(4):453–490, 1998.

	Document Signatures
	Indexed Signature Slice Lists
	Searching the ISSL

	Implementation
	Performance Considerations and Scalability
	Experimental Results
	Conclusion
	References

