
Indexed Signature Slice Lists for Fast Nearest-Neighbours
Search

ABSTRACT
Signature Files in the Information Retrieval context are a
technique used to represent documents, images and other
abstract objects with binary signatures of fixed length. The
signatures have the property that they preserve in signa-
ture space the mutual topological relationships that exist in
the original representation of objects. The original repre-
sentation is typically some form of very high-dimensional,
often highly sparse, feature vector derived with some prob-
abilistic, language model, or other suitable feature extrac-
tion/definition approach. Binary signatures offer a compres-
sion of the original representation onto a lower dimensional
and dense representation. It facilitates efficient similarity
computations using the Hamming distance[3] measure. This
efficiency motivates most applications of signatures. Local-
ity Sensitive Hashing is a method of dimensionality reduc-
tion that uses binary signatures often used in near-duplicate
detection in image or text document collections. There are
numerous publications about successful applications of Sig-
nature files. While signatures offer an acceptable measure
of similarity, performing a search with a given search argu-
ment (a signature) requires a Hamming distance calculation
against every signature in a collection. This quickly becomes
excessive when dealing with web-sized collections, and there
lies the problem of scalability. This paper addresses the
scalability problem in signature search. We describe a new
method of indexing and searching large binary signature col-
lections to efficiently find similar signatures in very large
collections. Experimental results demonstrate that our ap-
proach is effective in finding a set of nearest signatures to a
given search argument (signature) with high efficiency and
high fidelity.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Clustering,
Retrieval Models, Search Process

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

General Terms
Algorithms, Experimentation, Performance, Theory

Keywords
Document Signatures, Near-Duplicate Detection

1. DOCUMENT SIGNATURES
Topological signatures, as described by Geva et al[2] are a

refinement on Locality Sensitive hashing and the approach
of using file signatures to represent documents, originally
explored by Faloutsos and Christodoulakis[1]. These ini-
tial approaches were shown to be inferior to inverted file
approaches by Zobel et al.[4] Topology preserving signa-
tures in our work are derived from a document-term matrix,
randomly-projected onto a compact binary (+1,-1) subspace
to produce a new, lower-order matrix (that can be efficiently
stored) while preserving the topological relationships of doc-
uments in the original document-term matrix. The geomet-
ric interpretation of this projection is that the document col-
lection is mapped from its original representation as a term-
document weight matrix, onto the ±1N hypercube. Each
document is mapped to a vertex of the hypercube, and the
property of the projection is that it largely preserves the rel-
ative pairwise distances between points in input space, on
the hypercube. Furthermore, Geva et al describe an effec-
tive approach to performing ad-hoc keyword based search
with signatures, that overcomes the difficulties identified in
earlier models. A complete description of this approach is
given in [2], where it is demonstrated that for early preci-
sion the use of signatures for ad-hoc retrieval leads to search
performance that is not statistically different from state of
the art models such as BM25, language models and DFR.

For the sake of completeness, we briefly describe some de-
tails about that file signature approach. The original Falous-
tos et al approach is essentially a bloom filter, although not
explicitly described as such in the original paper[1]. Terms
in a document are hashed to create pseudorandom sparse bit
strings that are combined together (through a bitwise OR
operator) to create a document signature. Queries are then
tested by comparing the signatures of terms in the query (de-
rived in the same manner) with the document signatures.
If all the set bits in the query signature are also set in a
document signature, there is a possibility that the terms ap-
pear in the document. Since it is possible for these term bit
strings to combine to create a false positive for a term not
present in the document, the document must be scanned to
ensure that the terms in the query are actually present. This

is characteristic of bloom filters, which are highly efficient
but do result in false positives. The rate of false positives
can be reduced by increasing the size of the bit strings at
the expense of a greater storage requirement.

Signatures generated in this method can be used for in-
formation retrieval but have significant drawbacks, including
the necessity of storing the terms present in the document
to avoid false positives, and the cost of eliminating those be-
come highly excessive. They also require extensive amounts
of storage space to ensure signatures are long enough to re-
duce the occurrence of these false positives.

Locality Sensitive Hashing, as implemented and refined in
the TopSig approach of [2], fixes most of the problems iden-
tified with document signatures in terms of retrieval perfor-
mance. However, one problem remained unsolved in that
paper- the scalability of the approach is still limited while
it relies on sequential exhaustive hamming distance calcu-
lations. The approach required performing a Hamming dis-
tance calculation against every signature in the collection
and it quickly becomes prohibitive when collection sizes be-
come large enough. An approach is therefore needed to avoid
performing this calculation against every signature, while
still retrieving the nearest signatures.

2. INDEXED SIGNATURE SLICE LISTS
Indexed Signature Slice Lists (ISSLs) is a hybrid approach

that combines the inverted file approach with the signature
file approach. The purpose of an ISSL file is to provide
an index into a signature file to allow searching for sig-
natures close (in terms of Hamming distance) to a given
search signature. In a normal inverted file scheme the post-
ings correspond to terms in the document collection and the
search process combines those postings for a given set of
query terms to produce a ranked list of results. In an anal-
ogous manner, ISSL are posting lists, where signature slice
values correspond to terms, and the postings correspond to
signatures in the collection. The signature slices of a query
signature are used to combined the respective ISSL postings
during search to provide a ranked list of signatures.

The creation of ISSLs proceeds as follows. We start from
a set of binary signatures. We will focus the discussion on
1024 bit signatures, but other signature sizes are possible
and indeed used. We treat each signature as a multiple
set of 16 bit slices and view the signature as a set of 64
16-bit integers. For efficiency reasons related to processor
and software architecture considerations, 16-bit slices work
well, but signature slices of other sizes are possible. We
find that this choice is adequate even as we work with web-
scale collections. The ISSL index maintains posting lists
for each slice position and each of the 65,536 possible 16-
bit integer values. Hence there are 4,194,304 posting lists.
When indexing a signature, each of the 64 bit slices in the
signature appears in one of 64 posting lists. The specific
lists are identified by the combination of the slice position
and the integer value of the signature slice. The posting lists
contain the signature IDs of the represented signatures.

When searching an ISSL file for a search signature, the
search signature is divided into slices in the same way and
each slice is used to look up an ISSL. All the signature
IDs listed in the retrieved ISSLs are consolidated. Trivially,
when searching for a specific signature that was previously
indexed, we would find the signature ID in each of the post-
ing lists corresponding to its 64 slices. In general however

we are looking for nearest signatures which are highly un-
likely to be identical. This means that we need to be able
to compute the Hamming distance of signatures from the
search signatures by using the ISSL postings. For instance,
a signature may not appear in any of the 64 postings that
correspond to the query signature, but may be exactly one
bit away in each of those slices. That would amount to a
Hamming distance of 64, and it may well be the case that
this is the nearest signature. So we need to process the post-
ings in a different manner to the way we do with conventional
term-based search.

We need to consider not only the matching ISSL postings,
but also their neighbourhood. With 16-bit slices, we have 1
matching slice having the exact value, 16 slices that have a
value that is 1 bit away, 120 slices that have a value that is 2
bits away, and so on. The search is therefore repeated with
the search slices progressively altered to cover a wider Ham-
ming neighbourhood. As the lookup of postings progresses,
we tally the worst-case Hamming distance of signatures en-
countered in postings. Initially all signatures are assumed to
be at a distance of 1024. As search progresses, all signature
IDs that have not yet been encountered in any of the post-
ings have a worst case Hamming distance of 1024. On the
other hand, a signature ID that is observed in a particular
posting immediately receives a more optimistic estimate of
its distance. For instance, if a signature is observed in a slice
with a distance of 3 bits away from a search slice then its
worst case Hamming distance is reduced by 13. Most nearby
signatures to the search argument are observed sooner rather
than later in all slice positions and their distances becomes
known with full precision. Of course, if the process is carried
through until all ISSL postings are consulted then the dis-
tance of all signatures from the search argument is precisely
known.

This brings us to the key idea in this paper: we conjecture,
and test the conjecture, that it is not necessary to proceed
with the calculation until complete information is available,
in order to determine with high accuracy the neighbourhood
of a search signature. That is; we can stop the calculation
early and use the worst-case distance estimation to choose
the candidate list of nearest neighbours. The desired length
of the list of nearest neighbours is more often than not very
short (it does not usually depend on the collection size, but
rather on the users’ capacity to review long result lists.)
Therefore, once we identify the candidate results list we can
afford an accurate Hamming distance calculation and a final
sort to produce our final ranked result list.

The number of posting lists consulted is of course a func-
tion of the search-breadth in bits. Table 1 provides the num-
ber of ISSL postings that have to be consulted as function of
search-breadth. It also contains the percentage of distinct
signature IDs encountered while processing the list. This
corresponds to the Wall Street Journal collection of docu-
ment signatures.

Each signature is assigned a score for the purpose of this
search. Each score starts at 0 and is incremented by the
difference between the slice width and the Hamming dis-
tance between the search slice and the slice associated with
the list in which this signature appeared. When the max-
imum search-breadth (the number of bits that can differ
between the search slice and the signature slice) is equal to

1Tested on the Wall Street Journal collection indexed by
TopSig, averaged over 10 searches.

Bits changed Lists checked % of signatures
0 1 0.62%
1 17 7.13%
2 137 34.76%
3 697 79.62%
4 2517 98.93%
5 6885 100.00%
6 14893 100.00%
7 26333 100.00%
8 39203 100.00%
9 50643 100.00%
10 58651 100.00%
11 63019 100.00%
12 64839 100.00%
13 65399 100.00%
14 65519 100.00%
15 65535 100.00%
16 65536 100.00%

Table 1: Number of slice lists checked based on the
number of bits toggled in the search slice. The third
column shows the average portion of the collection
covered by these lists1.

the slice width, the score for each signature will be equal
to the difference between the signature width and the Ham-
ming distance. When the maximum search-breadth is lower,
the amount of processing time required is reduced as fewer
lists need to be considered. Assuming an equal distribution
of signatures per list2 allowing a maximum search-breadth
of 3 bits while using 16-bit slices will result in 1.06% of the
work being done than would be required for a maximum
distance of 16, but with potentially less accurate scores.

After the scores for all signatures have been determined,
the highest scoring signatures can be reranked using a full
Hamming distance calculation to ensure that the ranking of
these signatures is correct. At higher levels of maximum
search-breadth, more processing time is required but the
likelihood of documents that should appear in the top-K
being omitted is reduced. There are other speed-accuracy
tradeoffs available; increasing the number of signatures that
are reranked using Hamming distance may result in fewer
top documents being omitted at the cost of a linear increase
in processing time.

3. IMPLEMENTATION
The ISSL search platform was developed on top of the

open source signature search tool TopSig and is now a part
of that tool. The tool was developed in C using pthreads for
multithreading support.

The platform was developed with a focus on 16-bit ISSL
slices. As the main justification for ISSL is performance-
related, slices widths that weren’t powers of 2 were not con-

2Not necessarily a valid assumption for real data. For exam-
ple, TopSig signatures typically contain more off-bits than
on-bits, skewing the signature distribution towards the lists
that cover slices with fewer bits set. This is due to off-bits
being the default state of bits in a TopSig signature; any bits
unaffected by any of the terms in a document will assume
this state. Bits that are set have an equal chance of being
either on-bits or off-bits so the presence of this default state
results in more off-bits than on-bits.

sidered and both 8-bit and 32-bit slices were deemed in-
appropriate as 8-bit slices would not be able to substan-
tially reduce the amount of processing work required and
32-bit slices would impose too much overhead, making the
approach worthless for all but the largest of collections.

Due to the performance focus of ISSL, the approach de-
scribed was designed to work entirely within memory while
building the ISSL table and while searching it. While it
would be possible to create an implementation that works
from an ISSL table stored on disk without reading it into
memory first, this approach would take careful considera-
tion as many random accesses of the table are required.

Building the ISSL table was designed as a two-pass pro-
cess; the first pass is to determine how large each of the
posting lists are for the purpose of memory allocation and
the second pass is to fill them. Each list is stored as an array
of 32-bit integers that uniquely identify the signature within
a signature file. The s×2w lists3, along with an integer giv-
ing the number of signatures in this list are written to a file
for reading by the ISSL search tool.

The ISSL table can be read quickly if the on-disk rep-
resentation and in-memory representation of the arrays of
integers is the same. This will almost always be the case
when the ISSL table is written and read on the same ma-
chine but may not be the case if the ISSL table is moved
between machines of different endianness. The tool was de-
signed to recognise this and fall back on a slower approach
if necessary.

The amount of space taken up by the ISSL table scales
linearly with both signature width and collection size. While
a collection of 1,000,000 1024-bit signatures will take up
1000000 × 1024

8
bytes or ∼ 122 megabytes of space4, the

ISSL table for this same collection will require 4(1000000 ×
64 + 216 × 64) bytes, or ∼ 260 megabytes.

The potentially large sizes of the ISSL table and collec-
tion can impose limitations on the collections that can be
used with ISSL depending on the hardware available as both
signature and table are stored in memory5.

The third data structure that uses a considerable amount
of memory is the score table, which needs one element for
each signature. For simplicity 32-bit integers were used for
this implementation but 16-bit integers are fine if the signa-
ture width is lower than 216. This structure still ends up be-
ing much smaller than the other two, at only ∼ 4 megabytes
for our example 1,000,000 signature collection. The score
table is necessary as the score for any signature may be in-
creased by any of the posting lists; it is not feasible to keep a

3s = number of slices in a signature. w = slice width (in
bits). For example, a 1024-bit signature with 16-bit slices
will have 1024/16 or 64 slices per signature. (s = 64, w =
16)
4Plus overhead; TopSig imposes a mandatory overhead of
33 +w bytes per signature, where w is the maximum length
of any document identifier. This overhead can potentially
be considerable.
5This implementation of ISSL stores both in memory. This
is not necessarily required; for example, if a limited num-
ber of searches are going to be performed on a particular
collection the scoring phase and the reranking phase can be
separated with the intermediate results stored in memory or
on disk. This implementation of ISSL was designed to cre-
ate quick responses to individual queries while keeping all
information in memory, therefore necessitating the storage
of both signatures and ISSLs in memory.

top-K list or similar structure that only contains the highest
scoring signatures. As table 1 shows, most of the scores are
touched even at relatively low search-breadth thresholds.

The ISSL search tool begins the process to search for a
particular signature by resetting the score table to 0 and
iterating through the search signature, one 16-bit slice at a
time. For each slice, the Hamming neighbourhood array6 is
iterated through until the allowable search-breadth thresh-
old is met. For example, if the allowable search-breadth
threshold is set at 4, the first 2517 values (see table 1) of
the Hamming neighbourhood array will iterated through in
the process of scoring documents. These 2517 values will
contain all possible 16-bit values with between 0 and 4 on-
bits. The current value is combined with the search slice by
exclusive or and the result, combined with the position of
the slice within the signature, identifies one list in the ISSL
table. This list is then iterated through and each signature
that appears on the list gets its score incremented by 16−n
where n is the number of on-bits in the current value in the
Hamming neighbourhood array.

After this process is complete, the score table will contain
scores for each signature. The top-K scores can now be ex-
tracted from the array using a heap or similar structure7.
The top-K signatures then have their scores recomputed
with a full Hamming distance calculation and are sorted to
produce the final results.

4. PERFORMANCE CONSIDERATIONS AND
SCALABILITY

ISSL searches demonstrate an improvement in compu-
tational performance over the approach of calculating the
Hamming distance with every signature in a collection; how-
ever, computational time and memory use still scale linearly
with collection size, causing problems when dealing with
large collections. However, like basic signature searching,
this approach is also inherently conducive to parallel pro-
cessing.

The TopSig implementation of ISSL developed for this
study implements basic support for parallel processing using
the pthreads library. The user can specify via configuration
file or command line the number of threads that should be
used for searching. The threads are created for each search
and each is assigned an approximately equal portion of the
posting lists in the ISSL table. Each thread processes its
assigned lists, adding scores to the score table with atomic
operations8. When all threads have terminated the main

6To simplify determining the possible permutations of bits
that may be toggled in expanding the search neighbourhood,
the ISSL search tool precomputes a Hamming neighbour-
hood array of all possible 16-bit signatures and sorts the
array by the number of on-bits in each value. A slice can be
combined with these values with an exclusive or operation
to produce slices with the required number of bits; combin-
ing the search slice with the first element will produce the
original slice, while using last element will produce the in-
verse of the original slice. Intermediate values will produce
all possible versions of the slice with all possible permuta-
tions of flipped bits, allowing all permutations of a slice with
a certain number of bits changed to be accessed with little
further computation.
7In this implementation the top-K scores are extracted from
the array using a K-sized array that holds the K-highest
scoring signatures seen so far and replaces the signature with
the lowest score when a signature with a higher score is seen.

thread continues as normal, performing the top-K extrac-
tion and Hamming distance calculations without using extra
threads. This operation is efficient as it can be implemented
without locks.

The process of extracting the top-K elements from a list
can also be parallelised and this may be beneficial for search-
ing larger collections where this operation may consume a
greater portion of the total processing time. Each thread
can perform top-K extraction on separate portions of the
list and the top-K lists can be merged at the end.

These approaches allow for performance improvements across
a system with shared memory. For larger processing tasks, it
may be useful to split the workload across multiple systems
with independent memory. Signatures are also conducive to
this task, as a signature file can be split into multiple parts
and a separate ISSL created for each to divide the memory
and processor burden across many machines. The final re-
sults can then be merged together providing the scores are
preserved.

Performance approaches may vary depending on whether
focus is on improving the performance of individual queries
as would be desirable in an interactive system or on reduc-
ing the amount of time required to process a large batch of
queries as may be desirable for cluster generation. While
the previously discussed techniques are geared towards op-
timising the former, for the latter dividing up the queries
among threads may be more effective than dividing up the
collection. The tradeoff made involves increasing the latency
between submitting the query and retrieving results in ex-
change for reducing the amount of overall processing time
required.

5. EXPERIMENTAL RESULTS

6. CONCLUSION

7. REFERENCES
[1] C. Faloutsos and S. Christodoulakis. Signature files: An

access method for documents and its analytical
performance evaluation. ACM Transactions on
Information Systems (TOIS), 2(4):267–288, 1984.

[2] S. Geva and C.M. De Vries. Topsig: Topology
preserving document signatures. 2011.

[3] R.W. Hamming. Error detecting and error correcting
codes. Bell System technical journal, 29(2):147–160,
1950.

[4] J. Zobel, A. Moffat, and K. Ramamohanarao. Inverted
files versus signature files for text indexing. ACM
Transactions on Database Systems (TODS),
23(4):453–490, 1998.

8 sync fetch and add(), which is portable across Intel ar-
chitectures.

	Document Signatures
	Indexed Signature Slice Lists
	Implementation
	Performance Considerations and Scalability
	Experimental Results
	Conclusion
	References

