
Indexed Signature Slice Lists for Nearest-Neighbour
Determination

ABSTRACT
File signatures allow a document to be represented with a
signature of fixed length that shares the topological proper-
ties of the original document and can be used for efficient
document similarity computations using the Hamming dis-
tance[4] between the two signatures. While this approach
produces an acceptable measure of similarity, performing
searches requires performing a Hamming distance calcula-
tion against every signature in a collection, which quickly
becomes excessive when dealing with web-sized collections.
This paper describes a method of indexing slices of signa-
tures to efficiently find similar documents in a collection.
Experimental results suggest that indexed signatures are a
competitive approach to the problem of finding the signa-
tures with the smallest Hamming distance from the search
signature with high efficiency and a low error rate.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Clustering,
Retrieval Models, Search Process

General Terms
Algorithms, Experimentation, Performance, Theory

Keywords
Document Signatures, Near-Duplicate Detection

1. DOCUMENT SIGNATURES
Topological signatures, as described by Geva et al.[3] are

a refinement on the approach of using bit signatures to repre-
sent documents explored by Faloutsos and Christodoulakis[2]
and shown to be inferior to inverted file approaches by Zobel
et al.[5]. Topological signatures consist of a document-term
matrix projected into a randomised subspace to produce
a new, lower-order matrix (that can be efficiently stored)
while preserving the statistical properties of the original

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

document-term matrix. The new matrix is then flattened
into a bit string with positive and negative values being re-
duced to 1 and 0 bits respectively. (with zero values also
reduced to bits with a value of 0.) Queries can then be
projected into the same space, flattened and the Hamming
distance[4] between the query and document signatures can
be used to approximate the sum of the cosine similarities
between the term vectors present in both the original docu-
ment and query.

This approach to signatures is a refinement on the ap-
proach discredited by Zobel et al.[5], which is essentially a
bloom filter, although not explicitly described as such in the
original paper[2]. Terms are hashed to create pseudoran-
dom sparse bit strings that are combined together (through
a bitwise OR filter) to create a signature. Queries are then
tested by comparing the bit strings the terms in the query
hash to with the document signature. If all the bits appear,
there is a possibility that the term is in the document. As
it is possible for these term bit strings to combine to create
a false positive for a term not present in the document, the
document must be scanned to ensure that the terms in the
query are actually present. This is characteristic of bloom
filters, which are highly efficient but do result in false posi-
tives. The rate of false positives can be reduced by increasing
the size of the bit strings at the expense of a greater storage
requirement.

Signatures generated in this method can be used for in-
formation retrieval but have significant drawbacks, including
the necessity of storing the terms present in the document to
avoid false positives. They also require extensive amounts of
storage space to ensure signatures are long enough to reduce
the occurrence of these false positives.

While topological signatures fix some of the criticisms lev-
elled at document signatures in terms of retrieval perfor-
mance

[3], the approach required to search a collection (perform-
ing a Hamming distance calculation against every signature)
quickly becomes prohibitive when collection sizes become
large enough. An approach is therefore needed to avoid per-
forming this calculation against every signature, while still
retrieving most of the nearest signatures.

2. INDEXED SIGNATURE SLICE LISTS
Indexed Signature Slice Lists (ISSLs) are an approach sim-

ilar to both inverted files and clustering. The purpose of
an ISSL file is to provide an index into a signature file to
allow searching for signatures close (in terms of Hamming
distance) to a given search signature.

Max error Lists checked % of signatures
0 1 0.62%
1 17 7.13%
2 137 34.76%
3 697 79.62%
4 2517 98.93%
5 6885 100.00%
6 14893 100.00%
7 26333 100.00%
8 39203 100.00%
9 50643 100.00%
10 58651 100.00%
11 63019 100.00%
12 64839 100.00%
13 65399 100.00%
14 65519 100.00%
15 65535 100.00%
16 65536 100.00%

Table 1: Number of slice lists checked based on the
maximum error allowed. The third column shows
the average portion of the collection covered by
these lists1

To store a signature in an ISSL file, the signature is first
divided up into slices. For efficiency, 16 bits works well, but
signature slices of other sizes are possible. The combination
of the slice position and the value of the signature slice is
then used to select an ISSL to list the signature in. A single
signature will be listed in one ISSL for each slice the signa-
ture is divided into. In the case of a 1024-bit signature and
16-bit slices, each signature will be divided into 64 slices and
therefore be placed in 64 lists out of a total of 64× 216 lists.

When searching an ISSL file for signatures close to a search
signature, the search signature is divided into slices in the
same way and each slice is used to look up an ISSL. All the
signatures listed in the retrieved ISSLs are recorded. This
means that a signature will be a possible candidate if any
of the slices match, bit for bit, the associated slice of the
search signature.

While this step has a good chance of retrieving some of the
nearest signatures, it is not sufficient. The search is there-
fore repeated with the search slices slightly altered, with
each possible 1-bit error applied to the search slice. For 16-
bit slices, this means an extra 16 searches per slice. This
can then be repeated for every 2-bit error, every 3-bit error

and so forth up to the slice length if desired; with

k∑
i=0

nCi

lists checked when allowing for k bits of error in a search
consisting of n-bit slices.

Each signature is assigned a score for the purpose of this
search. Each score starts at 0 and is incremented by the dif-
ference between the slice width and the Hamming distance
between the search slice and the slice associated with the
list in which this signature appeared. When the maximum
error allowed is equal to the slice width, the score for each

1Tested on the Wall Street Journal collection indexed by
TopSig, averaged over results from document similarity
searches to 10 documents chosen with the first 10 5-digit
numbers from A Million Random Digits with 100,000 Nor-
mal Deviates.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1

2

3

4

5

6

7

8

9

10

Maximum bits of error

Av
er

ag
e

do
cu

m
en

ts
 m

at
ch

ed

Figure 1: Out of the top 10 results returned, the
number of results that match the actual top 10 re-
sults (ordered by Hamming distance)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

10

20

30

40

50

60

70

80

90

100

Maximum bits of error

Av
er

ag
e

do
cu

m
en

ts
 m

at
ch

ed

Figure 2: Out of the top 10 results returned, the
number of results that match the actual top 100 re-
sults (ordered by Hamming distance)

signature will be equal to the difference between the signa-
ture width and the Hamming distance. When the maximum
error is lower, the amount of processing time required is re-
duced as fewer lists need to be considered. Assuming an
equal distribution of signatures per list2 allowing a maxi-
mum error of 3 bits while using 16-bit slices will result in
1.06% of the work being done than would be required for a
maximum distance of 16, but with potentially less accurate
scores.

After the scores for all signatures have been determined,
the highest scoring signatures can be reranked using a full
Hamming distance calculation to ensure that the ranking of
these signatures is correct. At higher levels of maximum
error, more processing time is required but the likelihood of
documents that should appear in the top-K being omitted is
reduced. There are other speed-accuracy tradeoffs available;
increasing the number of signatures that are reranked using
Hamming distance may result in fewer top documents being
omitted at the cost of a linear increase in processing time.

3. IMPLEMENTATION
2Not necessarily a valid assumption for real data. For exam-
ple, TopSig signatures typically contain more off-bits than
on-bits, skewing the signature distribution towards the lists
that cover slices with fewer bits set.

The ISSL search platform was developed on top of the
open source signature search tool TopSig and is now a part
of that tool. The tool was developed in C using pthreads for
multithreading support.

The platform was developed with a focus on 16-bit ISSL
slices. As the main justification for ISSL is performance-
related, slices widths that weren’t powers of 2 were not con-
sidered and both 8-bit and 32-bit slices were deemed in-
appropriate as 8-bit slices would not be able to substan-
tially reduce the amount of processing work required and
32-bit slices would impose too much overhead, making the
approach worthless for all but the largest of collections.

Due to the performance focus of ISSL, the approach de-
scribed was designed to work entirely within memory while
building the ISSL table and while searching it. While it
would be possible to create an implementation that works
from an ISSL table stored on disk without reading it into
memory first, this approach would take careful considera-
tion as many random accesses of the table are required.

Building the ISSL table was designed as a two-pass pro-
cess; the first pass is to determine how large each of the
lists are for the purpose of memory allocation and the sec-
ond pass is to fill them. Each list is stored as an array of
32-bit integers that uniquely identify the signature within a
signature file. The s×2w lists3, along with an integer giving
the number of signatures in this list are written to a file for
reading by the ISSL search tool.

The ISSL table can be read quickly if the on-disk rep-
resentation and in-memory representation of the arrays of
integers is the same. This will almost always be the case
when the ISSL table is written and read on the same ma-
chine but may not be the case if the ISSL table is moved
between machines of different endianness. The tool was de-
signed to recognise this and fall back on a slower approach
if necessary.

The amount of space taken up by the ISSL table scales
linearly with both signature width and collection size. While
a collection of 1,000,000 1024-bit signatures will take up
1000000 × 1024

8
bytes or ∼ 122 megabytes of space4, the

ISSL table for this same collection will require 4(1000000 ×
64 + 216 × 64) bytes, or ∼ 260 megabytes.

The potentially large sizes of the ISSL table and collec-
tion can impose limitations on the collections that can be
used with ISSL depending on the hardware available as both
signature and table are stored in memory5.

The third data structure that uses a considerable amount

3s = number of slices in a signature. w = slice width (in
bits). For example, a 1024-bit signature with 16-bit slices
will have 1024/16 or 64 slices per signature. (s = 64, w =
16)
4Plus overhead. TopSig imposes a mandatory overhead of
33 +w bytes per signature, where w is the maximum length
of any document identifier. This overhead can potentially
be considerable.
5This implementation of ISSL stores both in memory. This
is not necessarily required; for example, if a limited num-
ber of searches are going to be performed on a particular
collection the scoring phase and the reranking phase can be
separated with the intermediate results stored in memory or
on disk. This implementation of ISSL was designed to cre-
ate quick responses to individual queries while keeping all
information in memory, therefore necessitating the storage
of both signatures and ISSLs in memory.

of memory is the score table, which needs one element for
each signature. For simplicity 32-bit integers were used for
this implementation but 16-bit integers are fine if the sig-
nature width is lower than 216. This structure still ends
up being much smaller than the other two, at only ∼ 4
megabytes for our example 1,000,000 signature collection.
The score table is necessary as the score for any signature
may be increased by any of the lists; it is not feasible to
keep a top-K list or similar structure that only contains the
highest scoring signatures. As table 1 shows, most of the
scores are touched even at relatively low error thresholds.

The ISSL search tool begins the process to search for a
particular signature by resetting the score table to 0 and
iterating through the search signature, one 16-bit slice at
a time. For each slice, the error array6 is iterated through
until the allowable error threshold is met. For example,
if the allowable error threshold is set at 4, the first 2517
values (see table 1) of the error array will iterated through
in the process of scoring documents. These 2517 values will
contain all possible 16-bit values with between 0 and 4 on-
bits. The current value is combined with the search slice by
exclusive or and the result, combined with the position of
the slice within the signature, identifies one list in the ISSL
table. This list is then iterated through and each signature
that appears on the list gets its score incremented by 16−n
where n is the number of on-bits in the current error value.

After this process is complete, the score table will contain
scores for each signature. The top-K scores can now be ex-
tracted from the array using a heap or similar structure7.
The top-K signatures then have their scores recomputed
with a full Hamming distance calculation and are sorted to
produce the final results.

4. PERFORMANCE CONSIDERATIONS AND
SCALABILITY

ISSL searches demonstrate an improvement in compu-
tational performance over the approach of calculating the
Hamming distance with every signature in a collection; how-
ever, computational time and memory use still scale linearly
with collection size, causing problems when dealing with
large collections. However, like basic signature searching,
this approach is also inherently conducive to parallel pro-
cessing.

The TopSig implementation of ISSL developed for this
study implements basic support for parallel processing using
the pthreads library. The user can specify via configuration
file or command line the number of threads that should be
used for searching. The threads are created for each search
and each is assigned an approximately equal portion of the
lists in the ISSL table. Each thread processes its assigned
lists, adding scores to the score table with atomic opera-

6To simplify determining the possible permutations of 1-bit,
2-bit, 3-bit errors and so on, the ISSL search tool precom-
putes an array of all possible 16-bit signatures and sorts the
array by the number of on-bits in each value. A slice can be
combined with these values with an exclusive or operation
to produce the errors required; the first element will produce
no error, while the last element will flip all of the bits of the
search slice.
7In this implementation the top-K scores are extracted from
the array using a K-sized array that holds the K-highest
scoring signatures seen so far and replaces the signature with
the lowest score when a signature with a higher score is seen.

tions8. When all threads have terminated the main thread
continues as normal, performing the top-K extraction and
Hamming distance calculations without using extra threads.
This operation is efficient as it can be implemented without
locks.

The process of extracting the top-K elements from a list
can also be parallelised and this may be beneficial for search-
ing larger collections where this operation may consume a
greater portion of the total processing time. Each thread
can perform top-K extraction on separate portions of the
list and the top-K lists can be merged at the end.

These approaches allow for performance improvements across
a system with shared memory. For larger processing tasks, it
may be useful to split the workload across multiple systems
with independent memory. Signatures are also conducive to
this task, as a signature file can be split into multiple parts
and a separate ISSL created for each to divide the memory
and processor burden across many machines. The final re-
sults can then be merged together providing the scores are
preserved.

Performance approaches may vary depending on whether
focus is on improving the performance of individual queries
as would be desirable in an interactive system or on reduc-
ing the amount of time required to process a large batch of
queries as may be desirable for cluster generation. While
the previously discussed techniques are geared towards op-
timising the former, for the latter dividing up the queries
among threads may be more effective than dividing up the
collection. The tradeoff made involves increasing the latency
between submitting the query and retrieving results in ex-
change for reducing the amount of overall processing time
required.

5. EXPERIMENTAL RESULTS

6. CONCLUSION

7. REFERENCES
[1] J. Callan, M. Hoy, C. Yoo, and L. Zhao. Clueweb09

data set. boston. lti. cs. cmu. edu, Jan, 2009.

[2] C. Faloutsos and S. Christodoulakis. Signature files: An
access method for documents and its analytical
performance evaluation. ACM Transactions on
Information Systems (TOIS), 2(4):267–288, 1984.

[3] S. Geva and C.M. De Vries. Topsig: Topology
preserving document signatures. 2011.

[4] R.W. Hamming. Error detecting and error correcting
codes. Bell System technical journal, 29(2):147–160,
1950.

[5] J. Zobel, A. Moffat, and K. Ramamohanarao. Inverted
files versus signature files for text indexing. ACM
Transactions on Database Systems (TODS),
23(4):453–490, 1998.

8 sync fetch and add(), which is portable across Intel ar-
chitectures.

	Document Signatures
	Indexed Signature Slice Lists
	Implementation
	Performance Considerations and Scalability
	Experimental Results
	Conclusion
	References

